본문 바로가기

수학

대수학

Algebra - group, ring, field, vector space, module, algebra

Define.

Given a set $S$,

We say $* : S \times S \to S$ is a binary operation(이항 연산)

if $*$ satisfies for any $x,y,z \in S$,

$(x*y)*z = x*(y*z)$ called the associative law(결합 법칙).

We call $(S, *)$ the semi-group(반군).

e.g) $S= \mathbb{N}$, $*=+$. $(a+b)+c = a+(b+c)$.

Non e.g) $S= \mathbb{N}$, $*=-$. : not binary operation.

e.g) $S=\{ 0, 1 \}$. $*= \times$. ($S$를 잘 선택해도 성립함)

 

Define.

Given a semi-group, $(M, *)$,

$\text{If }\exists e \in M \ \text{s.t.} \ \forall a \in M, \ a * e = e * a = a$.

We will call $e$ the identity of $M$.

and call $(M, *)$ the monoid.

 

Define.

Given a monoid $(G, *)$, we say $G$ is a group,

if $G$ satisfies the following : $\forall x \in G , \ \exists y \in G \ \text{s.t.} \ x*y=y*x=e$.

e.g) (1) $( \mathbb{N}, +)$: semi-gp, not monoid.

($\because a+e=e+a=a, \ e= 0 \ne \mathbb{N}$)

 

(2) $( \mathbb{N}, \times)$ : monoid, but not a group.

($\because a \times e = e \times a = a , \ e=1$.

$a \times x = x \times a = e =1 , \ x = \frac{1}{a}$)

 

(3) $( \mathbb{Z} , +)$ : group.

[$a+e=e+a=a \Rightarrow e=0 \in \mathbb{Z}$

$a+x=x+a=0 \Rightarrow x=-a \in \mathbb{Z}$]

 

(4) $\underbrace{(\mathbb{N} , +)}_{\text{semi-gp}} \subset \underbrace{(\mathbb{Z} , +)}_{\text{group}} \subset \underbrace{(\mathbb{Q} , +) \subset (\mathbb{R}, +)}_{\text{gps}}$

 

(5) $\underbrace{(\mathbb{Z} - \{ 0 \} , \times)}_{\text{semi-group}} \subset \underbrace{ (\mathbb{Q} - \{ 0 \} , \times ) \subset ( \mathbb{R} - \{ 0 \}, \times)}_{\text{gps}}$

 

(6) $( GL_n(\mathbb{R}) , \times)$ : group. ($\times$ : matrix-multiplication)(General Linear Group(nxn))

$= \{ A \in \text{Mat}_{n \times n} ( \mathbb{R} ) \mid \text{det} A \ne 0 \}$.

$e = \text{Id} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{pmatrix}$

$A^{-1}$ : the inverse of $A$.

 

(7) Given a set $A$, let $\mathcal{F} = \{ f : A \to A \mid f \ \text{is 1-1 onto} \}$.

Then $(\mathcal{F} , \circ )$ : group. ($\circ$ : composition of fns)

[$f \circ id = id \circ f = f$

$f \circ f^{-1} = f^{-1} \circ f = id$]

 

Remark.

(1) Given a monoid, such $e$ is unique.

(2) Given a group, for each $a \in (G, *) = G$, there exists unique $x \in G \ \text{s.t.} \ a*x = x*a = e$.

(Exercise) 2개 있다고 가정하고 풀면 2개가 같다는 결론이 나옴으로써 증명가능.

 

Define.

Given a group $(G, *)$,

We say $(G, *)$ is a commutative group if $\forall x,y \in G$, $x*y=y*x$.

If $*=+$, $(G, +)$ is called the abelian group.

 

Remark.

There is an operation which does not satisfy the associative law.

e.g) Lie-bracket. $[ \ , \ ]$.

$[[A,B],C] \ne [A, [B,C]]$

 

Define.

A set $R$ is a ring if $R$ is equipped with the addtion $+$ and multiplication $\cdot$.

$+ : R \times R \to R$

$ \cdot : R \times R \to R$

such that

(1) $(R, +)$ is an abelian gp.

(2) $(R, \cdot)$ is a semi-gp.

(3) $+, \cdot$ is compatible, i.e.,

$\begin{cases} (x+y) \cdot z = x \cdot z + y \cdot z \\ x \cdot (y+z) = x \cdot y + x \cdot z \end{cases} \ \ \ \ \ \  \forall x,y,z \in \mathbb{R}$

 

Define.
We say a ring $(\mathbb{F}, +, \cdot)$ is a field if $\{ \mathbb{F} - \{ 0 \} , \cdot \}$ is a commutative group.

e.g) $(\mathbb{R} , + , \times )$ is a field.

e.g) $(\mathbb{Q}, +, \times )$ is a field.

 

Define.

Given a ring $R$, a set $M$,

we say $M$ is a $R$-module if $M$ is equipped with the addition $+$ and the scalar multiplication

$R \times M \to M$ such that

$(r,m) \mapsto r \cdot m $ ($r$ : scalar)

(1) $(M, +)$ : abelian gp

(2) $(r_1 + r_2 ) \cdot m = r_1 m + r_2 m$, $\forall r_1 , r_2 \in R , m \in M$.

(3) $r \cdot (m_1 + m_2 ) = r \cdot m_1 + r \cdot m_2$, $\forall r \in R , \forall m_1 , m_2 \in M$.

(4) $O_R \cdot m = O_M$ $\forall m \in M$. ($O$는 덧셈의 항등원)

(5) $(r_1 r_2 ) \cdot m = r_1 \cdot (r_2 \cdot m )$ $\forall r_1 , r_2 \in R , \forall m \in M$.

 

Define.

Given a Field $\mathbb{F}$, we say $V$ is a vector space over $\mathbb{F}$ if $V$ is a $\mathbb{F}$-module.

 

Define.

Given a ring $R$ and a set $A$, we say $A$ is the algebra if $A$ has 3 operations with compatability.

$\begin{cases} + : A \times A \to A \ \ \ \ \text{(abelian)} \\ \times : A \times A \to A \ \ \ \ \text{(ring)}\\ \cdot : R \times A \to A \ \ \ \ \text{(scalar multiplication)} \end{cases}$

'수학' 카테고리의 다른 글

선형대수~추상대수-1  (1) 2024.11.05
선형대수학-1  (0) 2024.10.21
해석학 개론-2  (0) 2024.10.16
위상 수학-1  (0) 2024.10.14
해석학 개론-1  (0) 2024.10.03